
In this Letter we discuss a natural general relativistic mechanism that causes inhomogeneities and hence generates matter perturbations in the early universe. We concentrate on spikes, both incomplete spikes and recurring spikes, that naturally occur in the initial oscillatory regime of general cosmological models. In particular, we explicitly show that spikes occurring in a class of G_2 models lead to inhomogeneities that, due to gravitational instability, leave small residual imprints on matter in the form of matter perturbations. The residual matter overdensities from recurring spikes are not local but form on surfaces. We discuss the potential physical consequences of the residual matter imprints and their possible effect on the subsequent formation of large scale structure.
This is the longer version of the article that appeared in Phys. Rev. Lett. 108, 191101 (2012)
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
