
We show that self-annihilating neutralino WIMP dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.
5 pages, 2 figures, accepted for publication in Phys. Rev. Lett
Nuclear Theory (nucl-th), Cosmology and Nongalactic Astrophysics (astro-ph.CO), Nuclear Theory, FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
Nuclear Theory (nucl-th), Cosmology and Nongalactic Astrophysics (astro-ph.CO), Nuclear Theory, FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 86 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
