
We use quantum discord to characterize the correlations present in the quantum computational model DQC1, introduced by Knill and Laflamme [Phys. Rev. Lett. 81, 5672 (1998)]. The model involves a collection of qubits in the completely mixed state coupled to a single control qubit that has nonzero purity. The initial state, operations, and measurements in the model all point to a natural bipartite split between the control qubit and the mixed ones. Although there is no entanglement between these two parts, we show that the quantum discord across this split is nonzero for typical instances of the DQC1 ciruit. Nonzero values of discord indicate the presence of nonclassical correlations. We propose quantum discord as figure of merit for characterizing the resources present in this computational model.
4 Pages, 1 Figure
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
