
arXiv: 1806.07448
We explore the perspective of considering the squeezed thermal reservoir as an equilibrium reservoir in a generalized Gibbs ensemble with two non-commuting conserved quantities. We outline the main properties of such a reservoir in terms of the exchange of energy, both heat and work, and entropy, giving some key examples to clarify its physical interpretation. This new paradigm allows for a correct and insightful interpretation of all thermodynamical features of the squeezed thermal reservoir, as well as other similar non-thermal reservoirs, including the characterization of reversibility and the first and second laws of thermodynamics.
5 + 5 pages, 2 figures; Comments are welcomed; few typos corrected; accepted in PRE
Quantum Physics, Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
Quantum Physics, Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
