
Critical transitions occur in a variety of dynamical systems. Here, we employ quantifiers of chaos to identify changes in the dynamical structure of complex systems preceding critical transitions. As suitable indicator variables for critical transitions, we consider changes in growth rates and directions of covariant Lyapunov vectors. Studying critical transitions in several models of fast-slow systems, i.e., a network of coupled FitzHugh-Nagumo oscillators, models for Josephson junctions and the Hindmarsh-Rose model, we find that tangencies between covariant Lyapunov vectors are a common and maybe generic feature during critical transitions. We further demonstrate that this deviation from hyperbolic dynamics is linked to the occurrence of critical transitions by using it as an indicator variable and evaluating the prediction success through receiver operating characteristic curves. In the presence of noise, we find the alignment of covariant Lyapunov vectors and changes in finite-time Lyapunov exponents to be more successful in announcing critical transitions than common indicator variables as, e.g., finite-time estimates of the variance. Additionally, we propose a new method for estimating approximations of covariant Lyapunov vectors without knowledge of the future trajectory of the system. We find that these approximated covariant Lyapunov vectors can also be applied to predict critical transitions.
FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
