
Nematic liquid crystals exhibit both crystal-like and fluid-like features. In particular, the propagation of an acoustic wave shows an unexpected occurrence of some of the solid-like features at the hydrodynamic level, namely, the frequency-dependent anisotropy of sound velocity and acoustic attenuation. The non-Newtonian behavior of nematics also emerges from the frequency-dependent viscosity coefficients. To account for these phenomena, we put forward a viscoelastic model of nematic liquid crystals, and we extend our previous theory to fully include the combined effects of compressibility, anisotropic elasticity and dynamic relaxation, at any shear rate. The low-frequency limit agrees with the compressible Ericksen-Leslie theory, while at intermediate frequencies the model correctly captures the relaxation mechanisms underlying finite shear and bulk elastic moduli. We show that there are only four relaxation times allowed by the uniaxial symmetry.
9 pages, 3 figures
Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, Statistical and Nonlinear Physics; Statistics and Probability; Condensed Matter Physics
Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, Statistical and Nonlinear Physics; Statistics and Probability; Condensed Matter Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
