
Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.
1 + 20 Pages, LaTeX. References added, Discussions improved. Version accepted in Phys. Rev. E
High Energy Physics - Theory, Statistical Mechanics (cond-mat.stat-mech), High Energy Physics - Theory (hep-th), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
High Energy Physics - Theory, Statistical Mechanics (cond-mat.stat-mech), High Energy Physics - Theory (hep-th), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
