Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Earrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review E
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review E
Article . 2015 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.25916/su...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.25916/su...
Other literature type . 2024
Data sources: Datacite
versions View all 4 versions
addClaim

Drift and pseudomomentum in bounded turbulent shear flows

Authors: Phillips, W. R. C.;

Drift and pseudomomentum in bounded turbulent shear flows

Abstract

This paper is concerned with the evaluation of two Lagrangian measures which arise in oscillatory or fluctuating shear flows when the fluctuating field is rotational and the spectrum of wave numbers which comprise it is continuous. The measures are the drift and pseudomomentum. Phillips (J. Fluid Mech. 430, 209 (2001)) has shown that the measures are, in such instances, succinctly expressed in terms of Lagrangian integrals of Eulerian space-time correlations. But they are difficult to interpret, and the present work begins by expressing them in a more insightful form. This is achieved by assuming the space-time correlations are separable as magnitude, determined by one-point velocity correlations, and spatial diminution. The measures then parse into terms comprised of the mean Eulerian velocity, one-point velocity correlations, and a family of integrals of spatial diminution, which in turn define a series of Lagrangian time and velocity scales. The pseudomomentum is seen to be strictly negative and related to the turbulence kinetic energy, while the drift is mixed and strongly influenced by the Reynolds stress. Both are calculated for turbulent channel flow for a range of Reynolds numbers and appear, as the Reynolds number increases, to approach a terminal form. At all Reynolds numbers studied, the pseudomomentum has a sole peak located in wall units in the low teens, while at the highest Reynolds number studied, Reτ=5200, the drift is negative in the vicinity of that peak, positive elsewhere, and largest near the rigid boundary. In contrast, the time and velocity scales grow almost logarithmically over much of the layer. Finally, the drift and pseudomomentum are discussed in the context of coherent wall layer structures with which they are intricately linked.

Country
Australia
Keywords

Fundamental and theoretical fluid dynamics, Multiphysics flows (incl. multiphase and reacting flows), Microfluidics and nanofluidics, Applied mathematics not elsewhere classified, 532

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
hybrid