Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Earrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review E
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review E
Article . 2014 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Density functional theory of electrowetting

Authors: Ingrid Ibagon; Ingrid Ibagon; Markus Bier; Markus Bier;

Density functional theory of electrowetting

Abstract

The phenomenon of electrowetting, i.e., the dependence of the macroscopic contact angle of a fluid on the electrostatic potential of the substrate, is analyzed in terms of the density functional theory of wetting. It is shown that electrowetting is not an electrocapillarity effect, i.e., it cannot be consistently understood in terms of the variation of the substrate-fluid interfacial tension with the electrostatic substrate potential, but it is related to the depth of the effective interface potential. The key feature, which has been overlooked so far and which occurs naturally in the density functional approach is the structural change of a fluid if it is brought into contact with another fluid. These structural changes occur in the present context as the formation of finite films of one fluid phase in between the substrate and the bulk of the other fluid phase. The non-vanishing Donnan potentials (Galvani potential differences) across such film-bulk fluid interfaces, which generically occur due to an unequal partitioning of ions as a result of differences of solubility contrasts, lead to correction terms in the electrowetting equation, which become relevant for sufficiently small substrate potentials. Whereas the present density functional approach confirms the commonly used electrocapillarity-based electrowetting equation as a good approximation for the cases of metallic electrodes or electrodes coated with a hydrophobic dielectric in contact with an electrolyte solution and an ion-free oil, a significantly reduced tendency for electrowetting is predicted for electrodes coated with a dielectric which is hydrophilic or which is in contact with two immiscible electrolyte solutions.

Submitted

Keywords

Chemical Physics (physics.chem-ph), Physics - Chemical Physics, Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Green
bronze