
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 24730961
A recently introduced inference method based on system replication and an online message passing algorithm is employed to complete a previously suggested compression scheme based on a nonlinear perceptron. The algorithm is shown to approach the information theoretical bounds for compression as the number of replicated systems increases, offering superior performance compared to basic message passing algorithms. In addition, the suggested method does not require fine-tuning of parameters or other complementing heuristic techniques, such as the introduction of inertia terms, to improve convergence rates to nontrivial results.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.  | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.  | Average | 
