<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The heat capacity of supercooled water, measured down to -37 ��C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i. e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothetical liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water, and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum as temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.
References added, typos corrected. Extrapolation for viscosity improved; results essentially unchanged
Cold Temperature, Diffusion, Statistical Mechanics (cond-mat.stat-mech), Water, FOS: Physical sciences, Thermal Conductivity, Models, Theoretical, Condensed Matter - Statistical Mechanics
Cold Temperature, Diffusion, Statistical Mechanics (cond-mat.stat-mech), Water, FOS: Physical sciences, Thermal Conductivity, Models, Theoretical, Condensed Matter - Statistical Mechanics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |