<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We investigate the statistical anisotropy and Gaussianity of temperature fluctuations of Cosmic Microwave Background radiation (CMB) data from {\it Wilkinson Microwave Anisotropy Probe} survey, using the multifractal detrended fluctuation analysis, rescaled range and scaled windowed variance methods. The multifractal detrended fluctuation analysis shows that CMB fluctuations has a long range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of temperature fluctuation of CMB is mainly due to the long-range correlations and the map is consistent with a Gaussian distribution.
10 pages, 7 figures, V2: Added comments, references and major corrections
Physics - Data Analysis, Statistics and Probability, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics, Data Analysis, Statistics and Probability (physics.data-an)
Physics - Data Analysis, Statistics and Probability, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics, Data Analysis, Statistics and Probability (physics.data-an)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |