
pmid: 21517583
The scaling laws governing the concentration moments of a passive scalar released from a ground-level localized source in a neutrally stratified wall-shear layer are investigated using a theoretical framework recently formulated by Lebedev and Turitsyn [Phys. Rev. E 69, 036301 (2004)]. For the current application, this theoretical framework is generalized from the smooth random velocity field applicable in the viscous sublayer to the nonsmooth random velocity field that applies to the bulk of the wall-shear layer. Theoretical relationships for the passive scalar concentration moments are compared to a water-channel simulation of turbulent diffusion from a ground-level source in a wall-shear layer. The diffusion measurements in the wall-shear layer are shown to be consistent with the theoretical description and also imply the robustness of the identified scaling laws for the scalar concentration moments.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
