
pmid: 19518458
The self-propelling motion of the flexible ferromagnetic swimmer is described. Necessary symmetry breaking is achieved by the buckling instability at field inversion. The characteristics of self-propulsion are in good agreement with the numerical calculations of the Floquet multipliers for the ferromagnetic filament under the action of ac magnetic field. In the low frequency range the power stroke of self-propelling motion is similar to that used by the unicellular green algae chlamydomonas and in the high frequency region the self-propulsion is due to the undulation waves propagating from the free ends perpendicularly to ac magnetic field.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
