<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We describe the consequences of time reversal invariance of the Stokes' equations for the hydrodynamic scattering of two low Reynolds number swimmers. For swimmers that are related to each other by a time reversal transformation this leads to the striking result that the angle between the two swimmers is preserved by the scattering. The result is illustrated for the particular case of a linked-sphere model swimmer. For more general pairs of swimmers, not related to each other by time reversal, we find hydrodynamic scattering can alter the angle between their trajectories by several tens of degrees. For two identical contractile swimmers this can lead to the formation of a bound state.
4 pages, 3 figures
Motion, Bacteria, Flagella, Movement, Biophysics, Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, Bacterial Physiological Phenomena, Models, Biological, Mathematics
Motion, Bacteria, Flagella, Movement, Biophysics, Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, Bacterial Physiological Phenomena, Models, Biological, Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |