
Uncovering the directionality of coupling is a significant step in understanding drive-response relationships in complex systems. In this paper, we discuss a nonparametric method for detecting the directionality of coupling based on the estimation of information theoretic functionals. We consider several different methods for estimating conditional mutual information. The behavior of each estimator with respect to its free parameter is shown using a linear model where an analytical estimate of conditional mutual information is available. Numerical experiments in detecting coupling directionality are performed using chaotic oscillators, where the influence of the phase extraction method and relative frequency ratio is investigated.
directionality, time series analysis, phase dynamics, chaotic oscillators, information theory
directionality, time series analysis, phase dynamics, chaotic oscillators, information theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 162 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
