
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 18352101
Shannon's Capacity Theorem is the main concept behind the Theory of Communication. It says that if the amount of information contained in a signal is smaller than the channel capacity of a physical media of communication, it can be transmitted with arbitrarily small probability of error. This theorem is usually applicable to ideal channels of communication in which the information to be transmitted does not alter the passive characteristics of the channel that basically tries to reproduce the source of information. For an {\it active channel}, a network formed by elements that are dynamical systems (such as neurons, chaotic or periodic oscillators), it is unclear if such theorem is applicable, once an active channel can adapt to the input of a signal, altering its capacity. To shed light into this matter, we show, among other results, how to calculate the information capacity of an active channel of communication. Then, we show that the {\it channel capacity} depends on whether the active channel is self-excitable or not and that, contrary to a current belief, desynchronization can provide an environment in which large amounts of information can be transmitted in a channel that is self-excitable. An interesting case of a self-excitable active channel is a network of electrically connected Hindmarsh-Rose chaotic neurons.
15 pages, 5 figures. submitted for publication. to appear in Phys. Rev. E
Nonlinear Sciences - Exactly Solvable and Integrable Systems, Quantitative Biology - Neurons and Cognition, FOS: Biological sciences, Deterministic dynamics, FOS: Physical sciences, Neurons and Cognition (q-bio.NC), Chaotic Dynamics (nlin.CD), Exactly Solvable and Integrable Systems (nlin.SI), Nonlinear Sciences - Chaotic Dynamics
Nonlinear Sciences - Exactly Solvable and Integrable Systems, Quantitative Biology - Neurons and Cognition, FOS: Biological sciences, Deterministic dynamics, FOS: Physical sciences, Neurons and Cognition (q-bio.NC), Chaotic Dynamics (nlin.CD), Exactly Solvable and Integrable Systems (nlin.SI), Nonlinear Sciences - Chaotic Dynamics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
