<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17500659
handle: 11245/1.278887
Scaling properties of patterns formed by large contact forces are studied as a function of the applied shear stress, in two-dimensional static packings generated from the force network ensemble. An anisotropic finite-size-scaling analysis shows that the applied shear does not affect the universal scaling properties of these patterns, but simply induces different length scales in the principal directions of the macroscopic stress tensor. The ratio of these length scales quantifies the anisotropy of the force networks, and is found not to depend on the details of the underlying contact network, in contrast with other properties such as the yield stress.
4+ pages, 3 figures
Statistical Mechanics (cond-mat.stat-mech), Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, Condensed Matter - Statistical Mechanics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |