
pmid: 17280035
arXiv: physics/0607194
One-dimensional detrended fluctuation analysis (1D DFA) and multifractal detrended fluctuation analysis (1D MF-DFA) are widely used in the scaling analysis of fractal and multifractal time series because of being accurate and easy to implement. In this paper we generalize the one-dimensional DFA and MF-DFA to higher-dimensional versions. The generalization works well when tested with synthetic surfaces including fractional Brownian surfaces and multifractal surfaces. The two-dimensional MF-DFA is also adopted to analyze two images from nature and experiment and nice scaling laws are unraveled.
7 Revtex pages inluding 11 eps figures
Physics - General Physics, General Physics (physics.gen-ph), Physics - Data Analysis, Statistics and Probability, FOS: Physical sciences, Data Analysis, Statistics and Probability (physics.data-an)
Physics - General Physics, General Physics (physics.gen-ph), Physics - Data Analysis, Statistics and Probability, FOS: Physical sciences, Data Analysis, Statistics and Probability (physics.data-an)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 188 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
