
pmid: 17025601
Fractional Brownian motion (fBm) is a ubiquitous nonstationary model for many physical processes with power-law time-averaged spectra. In this paper, we exploit the nonstationarity to derive the full spectral correlation structure of fBm. Starting from the time-varying correlation function, we derive two different time-frequency spectral correlation functions (the ambiguity function and the Kirkwood-Rihaczek spectrum), and one dual-frequency spectral correlation function. The dual-frequency spectral correlation has a surprisingly simple structure, with spectral support on three discrete lines. The theoretical predictions are verified by spectrum estimates of Monte Carlo simulations and of a time series of earthquakes with a magnitude of 7 and higher.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
