
pmid: 15903657
arXiv: cond-mat/0411270
We analyze the problem of directed quantum transport induced by external exponentially correlated telegraphic noise. In addition to quantum nature of the heat bath, nonlinearity of the periodic system potential brings in quantum contribution. We observe that quantization, in general, enhances classical current at low temperature, while the differences become insignificant at higher temperature. Interplay of quantum diffusion and quantum correction to system potential is analyzed for various ranges of temperature, correlation time and strength of external noise and asymmetry parameters. A possible experimental realization of the observed quantum effects in a superionic conductor placed in a random asymmetric dichotomous electric field has been suggested.
23 pages and 5 figures. To be published in Physical Review E
Statistical Mechanics (cond-mat.stat-mech), Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, Condensed Matter - Statistical Mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
