
We study the surface roughness of prototype models displaying self-organized criticality (SOC) and their noncritical variants in one dimension. For SOC systems, we find that two seemingly equivalent definitions of surface roughness yields different asymptotic scaling exponents. Using approximate analytical arguments and extensive numerical studies we conclude that this ambiguity is due to the special scaling properties of the nonlinear steady state surface. We also find that there is no such ambiguity for non-SOC models, although there may be intermediate crossovers to different roughness values. Such crossovers need to be distinguished from the true asymptotic behaviour, as in the case of a noncritical disordered sandpile model studied in [10].
5 pages, 4 figures. Accepted for publication in Phys. Rev. E
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
