<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 12513339
We consider the failure of localized control in a nonlinear spatially extended system caused by extremely small amounts of noise. It is shown that this failure occurs as a result of a nonlinear instability. Nonlinear instabilities can occur in systems described by linearly stable but strongly nonnormal evolution operators. In spatially extended systems the nonnormality manifests itself in two different but complementary ways: transient amplification and spectral focusing of disturbances. We show that temporal and spatial aspects of the nonnormality and the type of nonlinearity are all crucially important to understanding and describing the mechanism of nonlinear instability. Presented results are expected to apply equally to other physical systems where strong nonnormality is due to the presence of mean flow rather than the action of control.
Submitted to Physical Review E
FOS: Physical sciences, Pattern Formation and Solitons (nlin.PS), Nonlinear Sciences - Pattern Formation and Solitons
FOS: Physical sciences, Pattern Formation and Solitons (nlin.PS), Nonlinear Sciences - Pattern Formation and Solitons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |