<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This paper discusses Random Matrix Models which exhibit the unusual phenomena of having multiple solutions at the same point in phase space. These matrix models have gaps in their spectrum or density of eigenvalues. The free energy and certain correlation functions of these models show differences for the different solutions. Here I present evidence for the presence of multiple solutions both analytically and numerically. As an example I discuss the double well matrix model with potential $V(M)= -{��\over 2}M^2+{g \over 4}M^4$ where $M$ is a random $N\times N$ matrix (the $M^4$ matrix model) as well as the Gaussian Penner model with $V(M)={��\over 2}M^2-t \ln M$. First I study what these multiple solutions are in the large $N$ limit using the recurrence coefficient of the orthogonal polynomials. Second I discuss these solutions at the non-perturbative level to bring out some differences between the multiple solutions. I also present the two-point density-density correlation functions which further characterizes these models in a new university class. A motivation for this work is that variants of these models have been conjectured to be models of certain structural glasses in the high temperature phase.
25 pages, Latex, 7 Figures, to appear in PRE
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |