
We propose a new method for (global) Hurst exponent determination based on wavelets. Using this method, we analyze synthetic data with predefined Hurst exponents, fracture surfaces and data from economy. The results are compared with those obtained from Fourier spectral analysis. When many samples are available, the wavelet and Fourier methods are comparable in accuracy. However, when one or only a few samples are available, the wavelet method outperforms the Fourier method by a large margin.
10 pages RevTeX, 13 Postscript figures. Some additional material compared to previous version
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 205 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
