Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2025 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oscillatory and excitable dynamics in an opinion model with group opinions

Authors: Corbit R. Sampson; Juan G. Restrepo; Mason A. Porter;

Oscillatory and excitable dynamics in an opinion model with group opinions

Abstract

In traditional models of opinion dynamics, each agent in a network has an opinion and changes in opinions arise from pairwise (i.e., dyadic) interactions between agents. However, in many situations, groups of individuals possess a collective opinion that can differ from the opinions of its constituent individuals. In this paper, we study the effects of group opinions on opinion dynamics. We formulate a hypergraph model in which both individual agents and groups of 3 agents have opinions, and we examine how opinions evolve through both dyadic interactions and group memberships. In some parameter regimes, we find that the presence of group opinions can lead to oscillatory and excitable opinion dynamics. In the oscillatory regime, the mean opinion of the agents in a network has self-sustained oscillations. In the excitable regime, finite-size effects create large but short-lived opinion swings (as in social fads). We develop a mean-field approximation of our model and obtain good agreement with direct numerical simulations. We also show -- both numerically and via our mean-field description -- that oscillatory dynamics occur only when the number of dyadic and polyadic interactions per agent are not completely correlated. Our results illustrate how polyadic structures, such as groups of agents, can have important effects on collective opinion dynamics.

18 pages, 10 figures, 1 table

Keywords

Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Mathematics, FOS: Physical sciences, Computer Science - Social and Information Networks, Physics and Society (physics.soc-ph), Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Adaptation and Self-Organizing Systems (nlin.AO), Nonlinear Sciences - Adaptation and Self-Organizing Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green