
Consciousness within the brain hinges on the synchronized activities of millions of neurons, but the mechanism responsible for orchestrating such synchronization remains elusive. In this study, we employ cavity quantum electrodynamics (cQED) to explore entangled biphoton generation through cascade emission in the vibration spectrum of C-H bonds within the lipid molecules' tails. The results indicate that the cylindrical cavity formed by a myelin sheath can facilitate spontaneous photon emission from the vibrational modes and generate a significant number of entangled photon pairs. The abundance of C-H bond vibration units in neurons can therefore serve as a source of quantum entanglement resources for the nervous system. The finding may offer insight into the brain's ability to leverage these resources for quantum information transfer, thereby elucidating a potential source for the synchronized activity of neurons.
Quantum Physics, Photons, Biological Physics (physics.bio-ph), Quantum Theory, FOS: Physical sciences, Physics - Biological Physics, Quantum Physics (quant-ph), Vibration, Myelin Sheath
Quantum Physics, Photons, Biological Physics (physics.bio-ph), Quantum Theory, FOS: Physical sciences, Physics - Biological Physics, Quantum Physics (quant-ph), Vibration, Myelin Sheath
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
