<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Topological phase transitions, which do not adhere to Landau's phenomenological model (i.e. a spontaneous symmetry breaking process and vanishing local order parameters) have been actively researched in condensed matter physics. Machine learning of topological phase transitions has generally proved difficult due to the global nature of the topological indices. Only recently has the method of diffusion maps been shown to be effective at identifying changes in topological order. However, previous diffusion map results required adjustments of two hyperparameters: a data length-scale and the number of phase boundaries. In this article we introduce a heuristic that requires no such tuning. This heuristic allows computer programs to locate appropriate hyperparameters without user input. We demonstrate this method's efficacy by drawing remarkably accurate phase diagrams in three physical models: the Haldane model of graphene, a generalization of the Su-Schreiffer-Haeger (SSH) model, and a model for a quantum ring with tunnel junctions. These diagrams are drawn, without human intervention, from a supplied range of model parameters.
Condensed Matter - Mesoscale and Nanoscale Physics, Physics - Data Analysis, Statistics and Probability, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics, Data Analysis, Statistics and Probability (physics.data-an)
Condensed Matter - Mesoscale and Nanoscale Physics, Physics - Data Analysis, Statistics and Probability, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics, Data Analysis, Statistics and Probability (physics.data-an)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |