<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We consider a scenario in which the inflaton $��$ is a pseudoscalar field non-minimally coupled to gravity through a term of the form ${\cal X} R ��^2$. The pseudoscalar is also coupled to a $U(1)$ gauge field (or an ensemble of ${\cal N}$ gauge fields) through an axial coupling of the form $��F \tilde{F}$. After M. M. Anber and L. Sorbo, Phys. Rev. D 81, 043534 (2010), Ref. [1], it is well known that this axial coupling leads to a production of gauge particles which acts as a friction term in the dynamics of the inflaton, producing a slow-roll regime even in presence of a steep potential. A remarkable result in this scenario, is that the spectrum of the chiral gravitational waves sourced by the scalar-gauge field interplay can be enhanced due to the non-minimal coupling with gravity, leading to measurable signatures, while maintaining agreement with current observational constraints on $n_s$ and $r$. The inclusion of non-minimal coupling could be helpful to alleviate tensions with non-Gaussianity bounds in models including axial couplings.
Two figures and one appendix added. Several references added. Matches the version accepted for publication in PRD
High Energy Physics - Phenomenology, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Phenomenology, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |