<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Applications of machine learning tools to problems of physical interest are often criticized for producing sensitivity at the expense of transparency. To address this concern, we explore a data planing procedure for identifying combinations of variables -- aided by physical intuition -- that can discriminate signal from background. Weights are introduced to smooth away the features in a given variable(s). New networks are then trained on this modified data. Observed decreases in sensitivity diagnose the variable's discriminating power. Planing also allows the investigation of the linear versus non-linear nature of the boundaries between signal and background. We demonstrate the efficacy of this approach using a toy example, followed by an application to an idealized heavy resonance scenario at the Large Hadron Collider. By unpacking the information being utilized by these algorithms, this method puts in context what it means for a machine to learn.
6 pages, 3 figures. Version published in PRD, discussion added
FOS: Computer and information sciences, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Statistics - Machine Learning, Physics - Data Analysis, Statistics and Probability, FOS: Physical sciences, Machine Learning (stat.ML), Data Analysis, Statistics and Probability (physics.data-an)
FOS: Computer and information sciences, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Statistics - Machine Learning, Physics - Data Analysis, Statistics and Probability, FOS: Physical sciences, Machine Learning (stat.ML), Data Analysis, Statistics and Probability (physics.data-an)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |