
We discuss the relation between functional renormalization group (FRG) and local renormalization group (LRG), focussing on the two dimensional case as an example. We show that away from criticality the Wess-Zumino action is described by a derivative expansion with coefficients naturally related to RG quantities. We then demonstrate that the Weyl consistency conditions derived in the LRG approach are equivalent to the RG equation for the $c$-function available in the FRG scheme. This allows us to give an explicit FRG representation of the Zamolodchikov-Osborn metric, which in principle can be used for computations.
19 pages, 1 figure
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Theoretical High Energy Physics, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Theoretical High Energy Physics, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
