<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ghost-free theories beyond the Horndeski class exhibit a partial breaking of the Vainshtein mechanism inside non-relativistic sources of finite extent. We exploit this breaking to identify new and novel astrophysical probes of these theories. Non-relativistic objects feel a gravitational force that is weaker than that predicted by general relativity. The new equation of hydrostatic equilibrium equation is derived and solved to predict the modified behaviour of stars. It is found that main-sequence stars are dimmer and cooler than their general relativity counterparts but the red giant phase is largely indistinguishable. The rotation curves and lensing potential of Milky Way-like galaxies are calculated. The circular velocities are smaller than predicted by general relativity at fixed radius and the lensing mass is larger than the dynamical mass. We discuss potential astrophysical probes of these theories and identify strong lensing as a particularly promising candidate.
Updated to correct mistake in equation (33) that changed figures 1-4
/dk/atira/pure/core/subjects/cosmology, High Energy Physics - Theory, Cosmology and Gravitation, Cosmology and Nongalactic Astrophysics (astro-ph.CO), 115, RCUK, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), STFC, Astrophysics - Cosmology and Nongalactic Astrophysics
/dk/atira/pure/core/subjects/cosmology, High Energy Physics - Theory, Cosmology and Gravitation, Cosmology and Nongalactic Astrophysics (astro-ph.CO), 115, RCUK, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), STFC, Astrophysics - Cosmology and Nongalactic Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 120 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |