
arXiv: 1411.3661
Canonical quantization of spherically symmetric space-times is carried out, using real-valued densitized triads and extrinsic curvature components, with specific factor ordering choices ensuring in an anomaly free quantum constraint algebra. Comparison with previous work [1] reveals that the resulting physical Hilbert space has the same form, although the basic canonical variables are different in the two approaches. As an extension, holonomy modifications from Loop Quantum Gravity are shown to deform the Dirac space-time algebra, while going beyond `effective' calculations.
21 pages; minor corrections and additional references
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
