
Moduli fields with Planck-suppressed couplings to light species are common in string compactifications. Decays of these moduli can reheat the universe at a late time and produce dark matter non-thermally. For generic moduli fields motivated by string theory with masses similar to that of the gravitino and TeV-scale superpartners in the minimal supersymmetric Standard Model (MSSM), the non-thermal production of the lightest superpartner (LSP) tends to create an unacceptably large relic density or too strong of an indirect detection signal. We call this the moduli-induced LSP problem of the MSSM. In this paper we investigate extensions of the MSSM containing new LSP candidates that can alleviate this tension. We examine the viability of this scenario in models with light Abelian and non-Abelian hidden sectors, and symmetric or asymmetric dark matter. In these extensions it is possible, though somewhat challenging, to avoid a moduli-induced LSP problem. In all but the asymmetric scenario, the LSP can account for only a small fraction of the observed dark matter density.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
