
arXiv: 1312.2479
We present an explicit integration of the kink soliton equation obtained in a recent interesting study of the classical Skyrme model where the field configurations are of a generalized hedgehog form which is of a domain-wall type. We also show that in such a reduced one-dimensional setting the first-order and second-order equations are equivalent. Consequently, in such a context, all finite-energy solitons are BPS type and precisely known.
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), 34B05, 34B15, 65L10, 74G15, 74K, FOS: Physical sciences, Mathematical Physics (math-ph), Mathematical Physics
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), 34B05, 34B15, 65L10, 74G15, 74K, FOS: Physical sciences, Mathematical Physics (math-ph), Mathematical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
