
arXiv: 1208.5869
We present a model for determining the dimensionless spin parameter and mass of the black hole remnant of black hole-neutron star mergers with parallel orbital angular momentum and initial black hole spin. This approach is based on the Buonanno, Kidder, and Lehner method for binary black holes, and it is successfully tested against the results of numerical-relativity simulations: the dimensionless spin parameter is predicted with absolute error $\lesssim 0.02$, whereas the relative error on the final mass is $\lesssim 2$%, its distribution in the tests being pronouncedly peaked at $1$%. Our approach and the fit to the torus remnant mass reported in Foucart (2012) thus constitute an easy-to-use analytical model that accurately describes the remnant of black hole-neutron star mergers. The space of parameters consisting of the binary mass ratio, the initial black hole spin, and the neutron star mass and equation of state is investigated. We provide indirect support to the cosmic censorship conjecture for black hole remnants of black hole-neutron star mergers. We show that the presence of a neutron star affects the quasinormal mode frequency of the black hole remnant, thus suggesting that the ringdown epoch of the gravitational wave signal may virtually be used to (1) distinguish black hole-black hole from black hole-neutron star mergers and to (2) constrain the neutron star equation of state.
16 pages, 11 figures, 5 tables; matches published version
High Energy Astrophysical Phenomena (astro-ph.HE), gravitational wave generation and sources; Numerical studies of other relativistic binaries; relativity and gravitation; Neutron stars, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, General Relativity and Quantum Cosmology
High Energy Astrophysical Phenomena (astro-ph.HE), gravitational wave generation and sources; Numerical studies of other relativistic binaries; relativity and gravitation; Neutron stars, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
