
arXiv: 1202.1466
The Zariski quantization is one of the strong candidates for a quantization of the Nambu-Poisson bracket. In this paper, we apply the Zariski quantization for first quantized field theories, such as superstring and supermembrane theories, and clarify physical meaning of the Zariski quantization. The first quantized field theories need not to possess the Nambu-Poisson structure. First, we construct a natural metric for the spaces on which Zariski product acts in order to apply the Zariski quantization for field theories. This metric is invariant under a gauge transformation generated by the Zariski quantized Nambu-Poisson bracket. Second, we perform the Zariski quantization of superstring and supermembrane theories as examples. We find flat directions, which indicate that the Zariski quantized theories describe many-body systems. We also find that pair creations and annihilations occur among the many bodies introduced by the Zariski quantization, by studying a simple model. These facts imply that the Zariski quantization is a second quantization. Moreover, the Zariski quantization preserves supersymmetries of the first quantized field theories. Thus, we can obtain second quantized theories of superstring and supermembranes by performing the Zariski quantization of the superstring and supermembrane theories.
18 pages, 2 figures
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Mathematics - Quantum Algebra, FOS: Mathematics, Quantum Algebra (math.QA), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Mathematics - Quantum Algebra, FOS: Mathematics, Quantum Algebra (math.QA), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
