<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We numerically construct a family of five-dimensional black holes exhibiting a line of first-order phase transitions terminating at a critical point at finite chemical potential and temperature. These black holes are constructed so that the equation of state and baryon susceptibilities approximately match QCD lattice data at vanishing chemical potential. The critical endpoint in the particular model we consider has temperature 143 MeV and chemical potential 783 MeV. Critical exponents are calculated, with results that are consistent with mean-field scaling relations.
38 pages, 12 figures, LaTeX. v2: Typos corrected, references added
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 153 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |