
arXiv: 0909.2251
Dark energy dynamics in the recent universe is influenced by its evolution through the long, matter dominated expansion history. A particular dynamical property, the flow variable, remains constant in several classes of scalar field models as long as matter dominates; the dark energy is only free to diverge in behavior at recent times. This gives natural initial conditions for Monte Carlo studies of dark energy dynamics. We propose a parametrization for the later evolution that covers a wide range of possible behaviors, is tractable in making predictions, and can be constrained by observations. We compare the approach to directly parametrizing the potential, which does not take into account the maturity of the dark energy dynamics.
12 pages, 11 figures. Accepted for publication in Phys Rev D.
Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
