
arXiv: 0908.3197
Cosmological observations are normally fit under the assumption that the dark sector can be decomposed into dark matter and dark energy components. However, as long as the probes remain purely gravitational, there is no unique decomposition and observations can only constrain a single dark fluid; this is known as the dark degeneracy. We use observations to directly constrain this dark fluid in a model-independent way, demonstrating in particular that the data cannot be fit by a dark fluid with a single constant equation of state. Parameterizing the dark fluid equation of state by a variety of polynomials in the scale factor $a$, we use current kinematical data to constrain the parameters. While the simplest interpretation of the dark fluid remains that it is comprised of separate dark matter and cosmological constant contributions, our results cover other model types including unified dark energy/matter scenarios.
5 pages, 5 figures incorporated. Updated to new observational data including SHOES determination of H0; new citations added
Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, 3101 Physics and Astronomy (miscellaneous), 3106 Nuclear and High Energy Physics, Quintessence, 520, Astrophysics - Cosmology and Nongalactic Astrophysics
Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, 3101 Physics and Astronomy (miscellaneous), 3106 Nuclear and High Energy Physics, Quintessence, 520, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
