
arXiv: 0806.3289
We model massive compact objects in galactic nuclei as stationary, axially-symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are a static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are function of the scalar charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightingly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The point-like caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis--Newman--Winicour naked singularities.
35 pages, 30 figures
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 94 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
