
We study the shear mode in the gauge/gravity correspondence at finite temperature. First, we confirm the general formula for the shear viscosity in an arbitrary background metric which includes a black hole in the fifth dimension. We then derive a general formula for the shear mode relaxation time which appears in the theory of relativistic dissipative fluid dynamics; it agrees with known expressions in the limit of conformal fields. These results may be useful in relativistic viscous fluid descriptions of high energy nuclear collisions at RHIC and LHC.
Modifications based on helpful feedback from colleagues and referee
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
