
arXiv: 0804.3627
If neutrinos are Majorana fermions, the lepton mixing parameter space consists of six mixing parameters: three mixing angles and three CP-odd phases. A related issue concerns the physical range of the mixing parameters. What values should these take so that all physically distinguishable mixing scenarios are realized? We present a detailed discussion of the lepton mixing parameter space in the case of two and three active neutrinos, and in the case of three active and N sterile neutrinos. We emphasize that this question, which has been a source of confusion even among "neutrino" physicists, is connected to an unambiguous definition of the neutrino mass eigenstates. We find that all Majorana phases can always be constrained to lie between 0 and pi, and that all mixing angles can be chosen positive and at most less than or equal to pi/2 provided the Dirac phases are allowed to vary between -pi and pi. We illustrate our results with several examples. Finally, we point out that, in the case of new flavor-changing neutrino interactions, the lepton mixing parameter space may need to be enlarged. We properly qualify this statement, and offer concrete examples.
16 pages, 2 .eps figures, references added, minor typos corrected
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
