Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Darrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review D
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review D
Article . 2008 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2008
License: PDM
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fiber bundles and matrix models

Authors: Takaaki Ishii; Goro Ishiki; Asato Tsuchiya; Shinji Shimasaki;

Fiber bundles and matrix models

Abstract

We investigate relationship between a gauge theory on a principal bundle and that on its base space. In the case where the principal bundle is itself a group manifold, we also study relations of those gauge theories with a matrix model obtained by dimensionally reducing them to zero dimensions. First, we develop the dimensional reduction of Yang-Mills (YM) on the total space to YM-higgs on the base space for a general principal bundle. Second, we show a relationship that YM on an SU(2) bundle is equivalent to the theory around a certain background of YM-higgs on its base space. This is an extension of our previous work (hep-th/0703021), in which the same relationship concerning a U(1) bundle is shown. We apply these results to the case of $SU(n+1)$ as the total space. By dimensionally reducing YM on $SU(n+1)$, we obtain YM-higgs on $SU(n+1)/SU(n)\simeq S^{2n+1}$ and on $SU(n+1)/(SU(n)\times U(1))\simeq CP^n$ and a matrix model. We show that the theory around each monopole vacuum of YM-higgs on $CP^n$ is equivalent to the theory around a certain vacuum of the matrix model in the commutative limit. By combing this with the relationship concerning a U(1) bundle, we realize YM-higgs on $SU(n+1)/SU(n)\simeq S^{2n+1}$ in the matrix model. We see that the relationship concerning a U(1) bundle can be interpreted as Buscher's T-duality.

53 pages, references added, typos corrected

Related Organizations
Keywords

High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
Green
bronze