Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 2445/131486
Probabilities in the multiverse can be calculated by assuming that we are typical representatives in a given reference class. But is this class well defined? What should be included in the ensemble in which we are supposed to be typical? There is a widespread belief that this question is inherently vague, and that there are various possible choices for the types of reference objects which should be counted in. Here we argue that the ``ideal'' reference class (for the purpose of making predictions) can be defined unambiguously in a rather precise way, as the set of all observers with identical information content. When the observers in a given class perform an experiment, the class branches into subclasses who learn different information from the outcome of that experiment. The probabilities for the different outcomes are defined as the relative numbers of observers in each subclass. For practical purposes, wider reference classes can be used, where we trace over all information which is uncorrelated to the outcome of the experiment, or whose correlation with it is beyond our current understanding. We argue that, once we have gathered all practically available evidence, the optimal strategy for making predictions is to consider ourselves typical in any reference class we belong to, unless we have evidence to the contrary. In the latter case, the class must be correspondingly narrowed.
Minor clarifications added
Univers, High Energy Physics - Theory, Cosmologia quàntica, Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum cosmology, Astrophysics, General Relativity and Quantum Cosmology, Universe, High Energy Physics - Theory (hep-th)
Univers, High Energy Physics - Theory, Cosmologia quàntica, Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum cosmology, Astrophysics, General Relativity and Quantum Cosmology, Universe, High Energy Physics - Theory (hep-th)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 51 | |
| downloads | 82 |

Views provided by UsageCounts
Downloads provided by UsageCounts