
We explore the geometric phase in N=(2,2) supersymmetric quantum mechanics. The Witten index ensures the existence of degenerate ground states, resulting in a non-Abelian Berry connection. We exhibit a non-renormalization theorem which prohibits the connection from receiving perturbative corrections. However, we show that it does receive corrections from BPS instantons. We compute the one-instanton contribution to the Berry connection for the massive CP^1 sigma-model as the potential is varied. This system has two ground states and the associated Berry connection is the smooth SU(2) 't Hooft-Polyakov monopole.
28 pages, 2 figures, references added. v2: clarification of possible corrections to Abelian Berry phase. v3: footnotes added to point the reader towards later developments
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
