<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We point out a general problem with the procedures commonly used to obtain improved actions from MCRG decimated configurations. Straightforward measurement of the couplings from the decimated configurations, by one of the known methods, can result into actions that do not correctly reproduce the physics on the undecimated lattice. This is because the decimated configurations are generally not representative of the equilibrium configurations of the assumed form of the effective action at the measured couplings. Curing this involves fine-tuning of the chosen MCRG decimation procedure, which is also dependent on the form assumed for the effective action. We illustrate this in decimation studies of the SU(2) LGT using Swendsen and Double Smeared Blocking decimation procedures. A single-plaquette improved action involving five group representations and free of this pathology is given.
18 pages, 9 figures, 9 tables
High Energy Physics - Lattice, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences
High Energy Physics - Lattice, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |