
We consider black ring with a cosmological constant in the five dimensional N=4 de Sitter supergravity theory. Our solution preserves half of the de Sitter supersymmetries and has one rotation symmetry. Unlike the flat case, there is no angular momentum and the stability against gravitational self-attraction is balanced by the cosmological repulsion due to the cosmological constant. Our solution describes a singular black ring since although it has horizons of topology S^1 x S^2, the horizons are singular. Despite the singularity, our solution displays some interesting regular physical properties: it carries a dipole charge and this charge contributes to the first law of thermodynamics; it has an entropy and mass which conform to the entropic N-bound proposal and the maximal mass conjecture We conjecture that the Gregory-Laflamme instability leads to a resolution of the singularity and results in a regular black ring.
v2. LaTex, 19 pages. with some corrections and comments added
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
