
We consider Lorentz violation in supersymmetric extensions of the standard model. We perform a spurion analysis to show that, in the simplest natural constructions, the resulting supersymmetry-breaking masses are tiny. In the process, we argue that one of the strongest bounds on Lorentz violation in the photon Lagrangian, which comes from the absence of birefringence from distant astrophysical sources, does not apply when Lorentz violation is parametrized by a single vector.
13 pages. v3: some comments and a short appendix added to elaborate on the relation between LV and SUSY breaking
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
