Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review D
Article . 2006 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2005
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

Inflation without inflatons

Authors: Opher, Reuven; Pelinson, Ana;
Abstract

(abridged)We present a model which predicts inflation without the presence of inflaton fields, based on the ��R^2 and Starobinsky models. It links the above models to the observable universe, in particular, to the ratio r of tensor to scalar fluctuations. In our model, we assume the existence of particles with the mass M that have a long decay time. These particles which were gravitationally produced \sim 60e-folds before the end of inflation produced the nearly scale invariant scalar density fluctuations which are observed. Gravitational waves (tensor fluctuations) were also produced at this epoch. The ratio of tensor to scalar fluctuations r (which are to be measured in the near future to good accuracy) determines M, which together with H_0, determine the time at the end of inflation, t_end. At t_end, the Hubble parameter begins to oscillate rapidly, gravitationally producing the bulk of the M particles, which we identify with the matter content of the universe today. The time required for the universe to dissipate its vacuum energy into M particles is found to be t_dis \simeq 6M_Pl^2/M^3. We assume that the time t_RH, (called the reheating time) needed for the M particles to decay into relativistic particles, is very much greater than that necessary to create the M particles, t_dis. From the ratio f\equiv t_dis/t_RH and g_\ast (the total number of degrees of freedom of the relativistic particles) we can, then, evaluate the maximum temperature of the universe, T_max, and the reheat temperature, T_RH, at t_RH. Our model, thus, predicts M, t_dis, t_end, T_max, T_RH, t_max, and t_RH as a function of r, f, and g_\ast (and to a weaker extent the particle content of the vacuum near the Planck epoch).

11 pages, 2 figures. Revised version, accepted for publication in Phys. Rev. D

Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green